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.SUMMARY

There are many situations where parallel,gided aerofoil sections with
leading and trailing edge fairings of Iimited hq4Abq ise extent have advantages
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investigated using two potential flow plus boundary layer computer
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NOTATION

c Chord of section

CD  Drag coefficient = Drag per unit span/pV
2 c

CL Lift coefficient = Lift per unit span/kpV2 c

Cp Pressure coefficient = (P-Po)/3koV
2

P Local static pressure

PO Free stream static pressure

R Reynolds number based on c

S Trailing edge curvature parameter - see section 4.2

t Section thickness

V Free stream velocity

x Chordwise coordinate

XLE Leading edge fairing length

XTE Trailing edge fairing length

y Coordinate perpendicular to chord

p Free stream density
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1. INTRODUCTION

The familiar families of aerofoil sectiorr (see for example Ref.i pervade

all of contemporary aero and hydrodynamic design. They are used for parts of flight
or marine systems intended to produce lift with minimum drag. They are also widely
used as basically non-lifting fairings for bluff objects where it is desired to minimise
drag and flow unsteadiness. However there are many circumstances where a
conventional aerofoil section is not necessarily the optimum shape for a fluid swept,
approximately two-dimensional, object.-,

Where design constraints force the use of very thin sections the small
leading edge radius on conventional aerofoils produces a number of problems (Refs. 2
& 3). The maximum lift coefficient is limited by an early leading edge separation
and the very high velocity peak near the leading edge at incidence will cause early
boundary layer transition and increased skin friction drag at some Reynolds
numbers. In liquid applications cavitation and ventilation will limit the usable lift.
In these situations non-conventional section shapes tending to be parallel sided over a
significant portion of their chord could be expected to offer advantages.

Aerofoil sections are a natural choice for fairing bluff objects with large
thickness ratio (cross stream dimension/streamwise dimension). The selection of an
appropriate aerofoil section is relatively straightforward (Ref.3) since the aerofoil
thickness required is almost independent of thickness/chord ratio (Fig.la). For bluff
objects with thickness ratios considerably less than unity the circumscribing aerofoil
section thickness is a strong function of the thickness/chord ratio (Fig.lb) and in
many real situations the optimisation is difficult. For bluff objects of small
thickness it would seem probably that simple leading and trailing edge fairings
(Fig.lc) could provide a better compromise than an aerofoil section in some
circumstances.

There are some aerodynamic situations where sections with parallel sides
over a large portion of their chord are necessary to meet their functional
requirements. An example of this is the "ground board" used for reflection plane
testing in a low speed wind tunnel (Ref.4). It was this application which motivated
the present investigation.

Th6re are also situations where arbitrary rules dictate the use of parallel
sided sections where aerofoil sections would otherwise be used. Example of these
are centreboards and rudders of some classes of yachts.

The aim of the investigation reported here is to give some guidance as to
the selection of suitable leading and trailing edge fairings for two dimensional flat
plates. The overall thickness/chord ratio range considered is 2% to 6% which covers
most of the practical applications. The invstigation is limited to incompressible
flow in the Reynolds number range W to Walthough the results should be directly
applicable to sub-critical compressible conditions. .

2. OUTLINE OF METHOD

AA series of fairing shapes was investigated using two readily available

aerofoil analysis computer programs The programs were PROFILE (Refs. 6 & 7) and
the Improved NASA-Lockheed Multielient Airfoil Ana!ysis Program (Ref.8). Both
of these programs were obtained in th rm of FORTRAN source code from the
NASA Computer Software Management and-bifaM ation Centre (COSMIC). They
were chosen for this investigation due to their availabt1ity, adequate ac!i pcy for

i
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( the present purpose and speed of execution. They are both potential flow programs
with a separate boundary layer computation. The NASA program had the capability
,to iterate between potential and boundary layer solutions and incorporated a
representation of the wake.

_.The programs were used as a numerical wind tunnel. A series of shapes
was tested and, based on an analysis of the results and physical reasoning, further
shapes were derived and computed.>, It would have been possible to specify an
optimisation function to be maximised, a series of parameter limits and perform an
automated optimisation using the analysis programs inside an optimisation loop. This
approach was not adopted since each potential application requires a completely
different optimisation function and the procedure does not give any physical insight
into the reasons for the identification of the optimum design.

3. ADAPTATION AND VALIDATION OF COMPUTER PROGRAMS

Following modifications necessary to adapt the two programs for operation
on the ARL ELXSI-6400 computer system (Appendix) they were applied to a wide
variety of problems to gain some insight into their capabilities and limitations.
Although both codes had areas where they would not produce solutions, or produced
obviously erroneous solutions, they behaved satisfactorily on sections of the type
studied in the prese,%t inveqigation (zero camber, thickness chord ratio 2% to 6% and
Reynolds number 10 to 10-).

To gain some indication of the accuracy of the codes in this area they
were compared with experimental results on two 6% aerofoils, the NACA 0006 and
NACA 64A006, from Ref.1. The results of these comparisons are plotted in Figs. 2 &

3. It can be seen that for moderate lift coefficients both codes show a similar and
acceptable level of agreement with the experimental results. The largest part of the
difference between the two sets of computed results is due to differences in the
predicted boundary layer transition points. The more sophisticated boundary layer
and wake treatment in the NASA-Lockheed program did not produce significantly
better results. The maximum lift coefficient was better predicted by PROFILE than
by the NASA-Lockheed code which consistently gave optimistic values.

Since PROFILE gave better results overall and executed considerably
faster, it was used for most calculations. However spot checks with the NASA-
Lockheed code always showed the same relative performance between different
configurations.

All the plotted results presented in this paper were computed using
PROFILE. Since PROFILE objected to parallel-sided profiles a very slight
divergence was incorporated.

4. RESiT8 AND DISCUSION

4.1 Leading Edges

The semi-ellipse (Fig.5) has been the customary choice for a low speed
nose fairing for a parallel-sided two dimensional section. This selection was based on
the well behaved pressure distribution produced by this shape (Ref.5) and its known
all-round aerodynamically satisfactory behaviour. To investigate the behaviour of
semi-elliptic leading edges a series of sections with different fineness ratio fairings
were computed. The leading edge shape was given by:

]4
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The angles of attack for the onset of gross leading edge separation for the
modified and elliptic fairings are presented in Fig.8. For low Reynolds numbers the
sharper elliptic fairing gives superior results to the modified fairing for small fairing
length. The optimum length for modified fairings at low Reynolds number is large
(XLE/t>5). This would be expected since it has been known for many years that low
Reynolds number aerofoils require sharp leading edges to avoid early laminar
separation (Ref.9). At high Reynolds number the modified leading edge has an
optimum length of about xLE/t - 3.5 where it gives superior results to an optimum
elliptic fairing. At intermediate Reynolds numbers the two fairings have similar
maximum separation free angle-of-attack ranges, but the modified fairing length
required is greater than that for the elliptic fairing.

In situations where cavitation, ventilation or compressibility are
significant design considerations the minimum pressure coefficient is an important
parameter. The section with the numerically smaller negative pressure peak will
have superior characteristics. For all practical parallel-sided sections the lowest
pressure occurs near the leading edge at all angles-of-attack. In Fig.9 the variation
of minimum pressure coefficient with angle-of-attack and fairing length is plotted
for a 4% thick section with both leading edge shapes. The results for 2% and 6%
thick sections show very similar trends. For angles-of-attack below 4' the elliptic
fairing is superior to the modified one. For angles-of-attack above 4" the modified
fairing is superior to the elliptic one. The apparent superiority of the very short
elliptic fairing at high angles of attack cannot be realised due to premature
separation.

Where a parallel-sided section is to be used as a ground plane or end plate,
the minimum deviation from free stream velocity over the greatest possible portion
of the chord is the main design requirement. Although these applications involve
nominally zero angle-of-attack they will usually experience induced flow angularity
and the performance at small angles will be important. At zero incidence the
leading edge fairing creates a positive surface velocity increment (i.e. negative
pressure coefficient) which dies away as the flow moves aft until the region of
influence of the trailing edge fairing is reached. At incidence the additional
negative pressure coefficient on the leeward surface will exceed the positive
increment on the windward surface. The pressure coefficient near the leading edge
(say at 0.1c) on the leeward surface gives a good indication of the departure from
free stream conditions over the major part of the section. In Fig.10 this x/c = 0.1
pressure coefficient is plotted against fairing length for both leading edge types and
t/c = 4%. The same trends are observed for 2% and 6% thick sections. It can be
seen that the modified leading edge is superior to the elliptic one for all leading edge
lengths. The modified leading edge shape would therefore be the normal choice for a
ground board or splitter plate in an aerodynamic experiment.

There is little to suggest that leading edge fairing shapes intermediate
between the elliptic and zero curvature at tangency types would have significant
advantages. However for particularly demanding specific applications they may be
worth investigating.
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y = 1 -(XLE x) 2

L

where the variables are defined in Fig.4

For the trailing edge a simple quadratic fairing was used (Fig.6). The
shape was given by:

with xTE=4 . y =± (1- (x - c + xE) 2 )

Since premature leading edge separation is one of the major problems with
thin sections, the effect of section thickness and elliptic leading edge fineness ratio
on angle of attack for significant separation was investigated. The results are shown
in Fig.7. Boundary layer separation very near the trailing edge was predicted for all
angles of attack where the leading edge flow remained attached. However this had
no effect on the predictions of leading edge separation since there was no iterative
solution of boundary layer and potential flow. The pressure distribution calculated
and used in the prediction of leading edge separation was that for an attached
trailing edge flow.

The differences between the predicted separation angles of attack for
geometrically similar leading edges on different thickness sections are due partly to
the differences in Reynolds number based on a characteristic leading edge fairing
dimension and partly on the effect of the trailing edge on the leading edge pressure
distribution. No attempt to separate these two effects was made. However as would
be expected there is a clear trend for the thicker sections to retain attached flow to
higher angles of attack.

For most of the cases computed there is a maximum separation free angle
of attack for leading edge fairing lengths in the range 2<xLE/t<3 with earlier
separation for longer and shorter fairings. This suggested two different separation
mechanisms and an examination of the computations showed that for long fairings
the separation occurred on the small radius-of-curvature nose, while for short
fairings the separation occurred on the shoulder where the fairing was tangent to the
parallel-sided part of the section. The maximum separation angle-of-attack
occurred at the transition between these two states. Some of the separations were
clearly laminar, some turbulent and some indeterminate. From Fig.7 it is evident
that if an elliptic leading edge fairing is used a XLE/t value of 2 will give the largest
angle-of-attack range under most conditions.

The elliptic leading edge results suggested the possibility of greater angle-
of-attack ranges if one of the separation modes could be suppressed. To explore this
possibility a modified leading edge profile with zero curvature at the point of
tangency between fairing and section was investigated. The shape (Fig.5) was
necessarily blunter than an elliptic one of the same length and was given by:

t 8v(x 2x X2

y - 2 3vxLE XLE 3xIE

LB... . . . .
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4.2 TraiIiDg FIMes

As for the leading edge fairing, the first requirement of the trailing edge
fairing is the elimination or minimisation of separation. Section drag would probably
be the most appropriate parameter to assess the seriousness of trailing edge
separation. However neither of the analysis methods used gave a good estimate of
drag in the presence of separation so the y coordinate of the separation point divided
by the total section thickness was adopted. This gives some indication of the wake
thickness.

The variation of separation point coordinate with trailing edge length for a
quadratic fairing on a 4% thick section at zero incidence is shown in Fig.11. Similar
results are obtained for other thickness ratios and the separation points are
relatively insensitive to angle of attack. Separate curves for laminar and turbulent
approach boundary layers are presented. For rost parallel sided sections at
incidence with chord Reynolds numbers less than 10T the windward surface boundary
layer is laminar at the start of the trailing edge fairing and the leeward surface layer
is turbulent. At zero incidence for Reynolds numbers not greatly exceeding 10,

both boundary layers will be laminar if xLE/t >3 for elliptic leading edge fairings, or
xLl/t>4 for modified fairings. It is evident from Fig.11 that trailing edge fairing
le1gth of around 6t are required to obtain attached flow with a turbulent approach
boundary layer and even longer fairings with laminar layers. As would be expected
longer fairings always give superior results to shorter ones.

The quadratic fairing shape considered up to this point was selected since
it was the simplest that would meet the required conditions of tangency with the
basic section and zero trailing edge thickness. To investigate the effect of fairing
shape in more detail a cubic expression was used with the slope at the trailing edge
as an additional parameter.
The shape was given by:

X2 X3

y ± (1+ ( 2 S-3)--- + 2 (1-S) -i-

where x, = x - c + xU

Slope at x = c
and S =

Slope at x = c for quadratic
fairing of same xTE

For S - 1 the cubic shape reduces to the earlier quadratic form and for S 0.75 the
special case of zero surface survature at the trailing edge results. For S<0.75 the
fairings have concave regions.

In Fig.12 the variation of trailing edge separation y coordinate is plotted
against the slope parameter for a 4% thick section with an xTE = 4t cubic fairing.
Similar results are obtained for other thicknesses and trailing edge lengths. For a
laminar approach boundary layer a minimum in y occurs for values of S between
0.75 and 1.0. For a turbulent layer y reduced mZnotonically with reducing S. For
general use the zero curvature S 0.9hape appears to be a good choice.

. .. . ..
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As noted previously the major requirement for sections for ground board
and splitter plate applications is the minimum deviation from free stream velocity
(c = 0) over the greatest chordwise extent. The fairing required to provide trailing
edge closure inherently produces a local flow acceleration which has some upstream
influence. The shorter the trailing edge fairing the further downstream this
acceleration occurs, but the greater its magnitude. The result of these conflictingreffects for a specific trailing edge fairing is shown in Fig.13. Very short fairings
show definite superiority in this particular situation and this result appears to be
fairly general from the calculations conducted. Short fairings could have significant
separation and the truncation of the section to produce a bluff base could give good
results in some circumstances.

4.3 Comparison Between Paralel-Side and Conventional Aerofoils

To provide some insight into their relative performance, a conventional
and a parallel-sided section were compared. A thickness/chord ratio of 4% was
chosen and a scaled thickness NACA 64006 profile was used as the conventional
reference aerofoil. Although in principle NACA 6-series sections can not be simply
scaled, the section produced had a satisfactory pressure distribution and was
considered to be representative of good modern practice. On the basis of the
investigations reported above a parallel-sided section with a 4t long modified leading
edge fairing and a 5t long, S = 0.75, cubic trailing edge fairing was selected for
comparison. The two section shapes are compared in Fig.14. It can be seen that the
parallel-sided section has considerably greater cross section area and would have
even greater strength (first moment of area) and stiffness (second moment of area)
than the conventional section.

Comparative lift-drag curves are plotted in Fig.15. At a Reynolds number
of 105 both sections have a similar maximum lift ang the conventional section has
consistently lower drag. At a Reynolds number of 10 the parallel-sided section has
approximately double the maximum Iit, but higher drag than the conventional
section. At a Reynolds number of 10' the parallel-sided section has more than
double the maximum lift of the conventional section and lower drag at lift
coefficients above 0.15. The rise in drag at low lift appears to be a genuine effect
associated with the movement of the transition points.

It is clear that conventional section shapes are not necessarily the
optimum shape for very thin aerofoils.

5. CONCLUION

There are many situations in which parallel-sided sections with leading and
trailing edge fairings of limited chordwise extent have advantages over conventional
sections. A numerical investigation into the design of this type of profile was
undertaken using the Improved NASA-Lockheed Multielement Airfoil Analysis
Program and the Eppler program PROFIW . A section thickness range of 2% to 6%
and a Reynolds number range of 10) to 10' were covered.

The main conclusions were:

a. For a conventional semi-elliptic leading edge fairing a maximum angle
of attack range is realised for a fairing length to thickness ratio of
approximately 2.
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b. For many applications a leading edge fairing with zero curvature at
the point of tangency has advantages over an elliptic fairing.

c. Trailing edge fairings defined by a cubic function with zero curvature
at the trailing edge have favourable characteristics.

d. For ground board or splitter plate applications in aerodynamic testing,
the shortest practical leading and trailing edge fairings should be
used.

The use of relatively simple potential flow and boundary layer programs as
a "numerical wind tunnel" was found to be a valuable design technique allowing a
wide range of shapes to be investigated at low cost.

a
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APPENDIX

Modification to Programs for use on ARL
ELXSI 6400 computer system

In program PROFILE the 5th parameter in the call to subroutine GAUSS in
subroutine PANEL was a constant. Not surprisingly when GAUSS tried to change the
value of this parameter an error was generated. The solution adopted was to replace
the constant in the call with a dummy variable initialised to the appropriate value
(0.) prior to the call. To avoid floating overflows when computing thin sections the
+DOUBLE compiler switch (64 bit precision) was used.

The modifications to the NASA-Lockheed program were more extensive.
Due to the effectively unlimited virtual memory size of the ELXSI the overlay
structure of the code was removed by treating the overlay calls as subroutine calls.
The code used a dynamic storage system which relied on operating system specific
capabilities which were not readily simulated on the ELXSI. The solution adopted
was to define a large (60 000) one dimensional array and EQUIVALENCE-ing all
variables stored in dynamic storage to this array. The function LOCF always
returned the value 1. The statement SAVE LOCB, IPA was added to subroutine
DYNSET and SAVE THTFIX was added to subroutine BLTRAN. The assembly
language matrix manipulation routines VIP and VIPD were replaced with FORTRAN
translations. Many other minor changes were made to bring the code up to current
FORTRAN standards. After operating the code for some time it was found that
although boundary layer transition following laminar separation was correctly
predicted, natural transition never occurred. The problem was traced to the
inconsistent dimensioning of array A in routines BLTRAN, POINT and SLOPE. The
effect was to overwrite the local switch variables KON and KCH in BLTRAN. The
solution adopted was to DIMENSION array A(4) in BLTRAN. The use of the
+DOUBLE compiler switch overcame occasional errors in the boundary layer
routines.

The fixed input formats in both codes were converted to free format to
simplify the preparation of data files.

k~ ~ ~ ~ ~ ~ ~ ~~-- ---- .. .............................. ..



a. High thickness ratio object -NACA 64 series sections

b. Moderate thickness ratio object
-NACA 64 series sections

c. Moderate thickness ratio object
-simple leading and trailing edge fairings

FIG. 1. AERODYNAMIC FAIRINGS FOR BLUFF OBJECTS
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